MATH 3400

- Numerical Methods for Ordinary Differential Equations by A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world's leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics. In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems. This third edition of Numerical Methods for Ordinary Differential Equations will serve as a key text for senior undergraduate and graduate courses in numerical analysis, and is an essential resource for research workers in applied mathematics, physics and engineering. Call Number: E-BOOKISBN: 9781119121534Publication Date: 2016-08-01
- Ordinary Differential Equations and Linear Algebra by Ordinary differential equations (ODEs) and linear algebra are foundational postcalculus mathematics courses in the sciences. The goal of this text is to help students master both subject areas in a one-semester course. Linear algebra is developed first, with an eye toward solving linear systems of ODEs. A computer algebra system is used for intermediate calculations (Gaussian elimination, complicated integrals, etc.); however, the text is not tailored toward a particular system. Ordinary Differential Equations and Linear Algebra: Systematically develops the linear algebra needed to solve systems of ODEs. Includes over 15 distinct applications of the theory, many of which are not typically seen in a textbook at this level (e.g., lead poisoning, SIR models, digital filters). Emphasizes mathematical modeling. Contains group projects at the end of each chapter that allow students to more fully explore the interaction between the modeling of a system, the solution of the model, and the resulting physical description.Call Number: QA372 .K2155 2015ISBN: 9781611974089Publication Date: 2016-02-25
- Ordinary Differential Equations by Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps and provides all the necessary details. Topical coverage includes: First-Order Differential Equations Higher-Order Linear Equations Applications of Higher-Order Linear Equations Systems of Linear Differential Equations Laplace Transform Series Solutions Systems of Nonlinear Differential Equations In addition to plentiful exercises and examples throughout, each chapter concludes with a summary that outlines key concepts and techniques. The book's design allows readers to interact with the content, while hints, cautions, and emphasis are uniquely featured in the margins to further help and engage readers. Written in an accessible style that includes all needed details and steps, Ordinary Differential Equations is an excellent book for courses on the topic at the upper-undergraduate level. The book also serves as a valuable resource for professionals in the fields of engineering, physics, and mathematics who utilize differential equations in their everyday work. An Instructors Manual is available upon request. Email sfriedman@wiley.com for information. There is also a Solutions Manual available. The ISBN is 9781118398999.Call Number: E-BOOKISBN: 9781118230022Publication Date: 2012-02-14

- Numerical Solution of Ordinary Differential Equations by A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.Call Number: QA372 .A85 2009ISBN: 9780470042946Publication Date: 2009-02-09
- Geometrical Properties of Differential Equations by This textbook is a short comprehensive and intuitive introduction to Lie group analysis of ordinary and partial differential equations. This practical-oriented material contains a large number of examples and problems accompanied by detailed solutions and figures. In comparison with the known beginner guides to Lie group analysis, the book is oriented toward students who are interested in financial mathematics, mathematical finance and economics.We provide the results of the Lie group analysis of actual models in Financial Mathematics using recent publications. These models are usually formulated as nonlinear partial differential equations and are rather difficult to make use of. With the help of Lie group analysis it is possible to describe some important properties of these models and to obtain interesting reductions in a clear and understandable algorithmic way.The book can serve as a short introduction for a further study of modern geometrical analysis applied to models in financial mathematics. It can also be used as textbook in a master's program, in an intensive compact course, or for self study.The textbook with a large number of examples will be useful not only for students who are interested in Financial Mathematics but also for people who are working in other areas of research that are not directly connected with Physics (for instance in such areas of Applied Mathematics like mathematical economy, bio systems, coding theory, etc.).Call Number: QA387 .B625 2015ISBN: 9789814667241Publication Date: 2015-05-01
- An Introduction to Differential Equations by For more than half a century, stochastic calculus and stochastic differential equations have played a major role in analyzing the dynamic phenomena in the biological and physical sciences, as well as engineering. the advancement of knowledge in stochastic differential equations is spreading rapidly across the graduate and postgraduate programs in universities around the globe. This will be the first available book that can be used in any undergraduate/graduate stochastic modeling/applied mathematics courses and that can be used by an interdisciplinary researcher with a minimal academic background.An Introduction to Differential Equations: Volume 2 is a stochastic version of Volume 1 ("An Introduction to Differential Equations: Deterministic Modeling, Methods and Analysis"). Both books have a similar design, but naturally, differ by calculi. Again, both volumes use an innovative style in the presentation of the topics, methods and concepts with adequate preparation in deterministic Calculus.Call Number: QA371 .L33 2013ISBN: 9789814390071Publication Date: 2013-01-11
- Differential Equations with Mathematica by Differential Equations with Mathematica, Fourth Edition is a supplementing reference which uses the fundamental concepts of the popular platform to solve (analytically, numerically, and/or graphically) differential equations of interest to students, instructors, and scientists. Mathematica's diversity makes it particularly well suited to performing calculations encountered when solving many ordinary and partial differential equations. In some cases, Mathematica's built-in functions can immediately solve a differential equation by providing an explicit, implicit, or numerical solution. In other cases, mathematica can be used to perform the calculations encountered when solving a differential equation. Because one goal of elementary differential equations courses is to introduce students to basic methods and algorithms so that they gain proficiency in them, nearly every topic covered this book introduces basic commands, also including typical examples of their application. A study of differential equations relies on concepts from calculus and linear algebra, so this text also includes discussions of relevant commands useful in those areas. In many cases, seeing a solution graphically is most meaningful, so the book relies heavily on Mathematica's outstanding graphics capabilities.Call Number: QA371.5.D37 A24 2016ISBN: 9780128047767Publication Date: 2016-09-29
- Mastering Differential Equations : the Visual Method by The pinnacle of a mathematics education, differential equations assume a basic knowledge of calculus, and they have traditionally required the rote memorization of a vast "cookbook" of formulas and specialized tricks needed to find explicit solutions. But now, computers have allowed solutions to be approximated and displayed in easy-to-grasp computer graphics. For the first time, a method exists that can start a committed learner on the road to mastering this beautiful application of the ideas and techniques of calculus - without the need for all that memorization. This course takes you on an amazing mathematical journey in 24 intellectually stimulating and visually engaging half-hour lectures taught by a pioneer of the visual approach, Professor Robert Devaney, the coauthor of one of the most widely used textbooks on ordinary differential equations. Professor Devaney draws on the power of the computer to explore solutions visually. Throughout these graphics-intensive lectures, you investigate the geometric behavior of differential equations, seeing how the computer can calculate approximate solutions with as much precision as needed. And you may be surprised to learn how easily you can calculate and display approximate solutions yourself, even using nothing more than an ordinary spreadsheet. Best of all, the visual method means that unrealistic simplifications need not be applied to a problem. Mastering Differential Equations: The Visual Method guides you into the 21st century, showing how this deceptively simple tool - the differential equation - continues to give surprising and spectacular insights into both the world of mathematics and the workings of the universeCall Number: QA371 .D4 2011ISBN: 9781598037432Publication Date: 2011-01-01
- Differential Equations with MATLAB by A unique textbook for an undergraduate course on mathematical modeling, Differential Equations with MATLAB: Exploration, Applications, and Theoryprovides students with an understanding of the practical and theoretical aspects of mathematical models involving ordinary and partial differential equations (ODEs and PDEs). The text presents a unifying picture inherent to the study and analysis of more than 20 distinct models spanning disciplines such as physics, engineering, and finance. The first part of the book presents systems of linear ODEs. The text develops mathematical models from ten disparate fields, including pharmacokinetics, chemistry, classical mechanics, neural networks, physiology, and electrical circuits. Focusing on linear PDEs, the second part covers PDEs that arise in the mathematical modeling of phenomena in ten other areas, including heat conduction, wave propagation, fluid flow through fissured rocks, pattern formation, and financial mathematics. The authors engage students by posing questions of all types throughout, including verifying details, proving conjectures of actual results, analyzing broad strokes that occur within the development of the theory, and applying the theory to specific models. The authors' accessible style encourages students to actively work through the material and answer these questions. In addition, the extensive use of MATLAB®GUIs allows students to discover patterns and make conjectures. ormation, and financial mathematics. The authors engage students by posing questions of all types throughout, including verifying details, proving conjectures of actual results, analyzing broad strokes that occur within the development of the theory, and applying the theory to specific models. The authors' accessible style encourages students to actively work through the material and answer these questions. In addition, the extensive use of MATLAB®GUIs allows students to discover patterns and make conjectures.Call Number: QA371 .M39 2015ISBN: 9781466557079Publication Date: 2014-09-08

- Generalized Ordinary Differential Equations by Explores the basics of social policy and program analysis, such as designing new programs or evaluating and improving existing ones. Social Policy and Social Programs is distinctive in providing specific criteria for judging the effectiveness of social policies and programs. These criteria can be applied to the analysis of widely different social services such as counseling and therapeutic services, supportive assistance, and "hard" benefits like food stamps, cash, and housing vouchers. By focusing especially on social problems, policies, and programs in major practice areas like child welfare, health, poverty, and mental illness, the author provides students with the tools they need to understand and evaluate the programs in which they are doing their field placements. Upon completing this book readers will be able to: Analyze the effectiveness of current social programs Create new programs based on the criteria provided Apply what they have learned to evaluate their field placement programs Note: MySearchLab does not come automatically packaged with this text. To purchase MySearchLab, please visit: www.mysearchlab.com or you can purchase a ValuePack of the text + MySearchLab (at no additional cost): ValuePack ISBN-10: 0205222943 / ValuePack ISBN-13: 9780205222940.Call Number: E-BOOKISBN: 9814324027Publication Date: 2011-03-31
- Ordinary Differential Equations by Ordinary Differential Equations introduces key concepts and techniques in the field and shows how they are used in current mathematical research and modelling. It deals specifically with initial value problems, which play a fundamental role in a wide range of scientific disciplines, including mathematics, physics, computer science, statistics and biology. This practical book is ideal for students and beginning researchers working in any of these fields who need to understand the area of ordinary differential equations in a short time.Call Number: E-BOOKISBN: 9781107697492Publication Date: 2011-09-29
- Symmetry Analysis of Differential Equations by A self-contained introduction to the methods and techniques of symmetry analysis used to solve ODEs and PDEs Symmetry Analysis of Differential Equations: An Introduction presents an accessible approach to the uses of symmetry methods in solving both ordinary differential equations (ODEs) and partial differential equations (PDEs). Providing comprehensive coverage, the book fills a gap in the literature by discussing elementary symmetry concepts and invariance, including methods for reducing the complexity of ODEs and PDEs in an effort to solve the associated problems. Thoroughly class-tested, the author presents classical methods in a systematic, logical, and well-balanced manner. As the book progresses, the chapters graduate from elementary symmetries and the invariance of algebraic equations, to ODEs and PDEs, followed by coverage of the nonclassical method and compatibility. Symmetry Analysis of Differential Equations: An Introduction also features: Detailed, step-by-step examples to guide readers through the methods of symmetry analysis End-of-chapter exercises, varying from elementary to advanced, with select solutions to aid in the calculation of the presented algorithmic methods Symmetry Analysis of Differential Equations: An Introduction is an ideal textbook for upper-undergraduate and graduate-level courses in symmetry methods and applied mathematics. The book is also a useful reference for professionals in science, physics, and engineering, as well as anyone wishing to learn about the use of symmetry methods in solving differential equations.Call Number: E-BOOKISBN: 9781118721407Publication Date: 2015-01-20
- Introductory Course on Differential Equations by Introductory Course on DIFFERENTIAL EQUATIONS provides an excellent exposition of the fundamentals of ordinary and partial differential equations and is ideally suited for a first course of undergraduate students of mathematics, physics and engineering. The aim of this book is to present the elementary theories of differential equations in the forms suitable for use of those students whose main interest in the subject are based on simple mathematical ideas.Call Number: E-BOOKISBN: 9781842659250Publication Date: 2014-10-31
- Applied Differential Equations by Applied Differential Equations discusses the Legendre and Bessel Differential equations and its solutions. Various properties of Legendre Polynomials as well as Legendre function and Bessel functions in part one. The second order Partial Differential equation of three types is studied and the technique to solve with the separation of variables technique called Fourier's Method have been discussed in the second part. In the Appendix some applications of the Heat Equation are discussed to Model the Environment. NEW TO THE SECOND EDITION: Chapter on Matlab Solution to ODE, PDE and SDE as an appendix In the Appendix some applications of the Heat Equation are discussed to Model the Environment.Call Number: E-BOOKISBN: 9781842658055Publication Date: 2013-01-01
- General Linear Methods for Ordinary Differential Equations by Learn to develop numerical methods for ordinary differential equations General Linear Methods for Ordinary Differential Equations fills a gap in the existing literature by presenting a comprehensive and up-to-date collection of recent advances and developments in the field. This book provides modern coverage of the theory, construction, and implementation of both classical and modern general linear methods for solving ordinary differential equations as they apply to a variety of related areas, including mathematics, applied science, and engineering. The author provides the theoretical foundation for understanding basic concepts and presents a short introduction to ordinary differential equations that encompasses the related concepts of existence and uniqueness theory, stability theory, and stiff differential equations and systems. In addition, a thorough presentation of general linear methods explores relevant subtopics such as pre-consistency, consistency, stage-consistency, zero stability, convergence, order- and stage-order conditions, local discretization error, and linear stability theory. Subsequent chapters feature coverage of: Differential equations and systems Introduction to general linear methods (GLMs) Diagonally implicit multistage integration methods (DIMSIMs) Implementation of DIMSIMs Two-step Runge-Kutta (TSRK) methods Implementation of TSRK methods GLMs with inherent Runge-Kutta stability (IRKS) Implementation of GLMs with IRKS General Linear Methods for Ordinary Differential Equations is an excellent book for courses on numerical ordinary differential equations at the upper-undergraduate and graduate levels. It is also a useful reference for academic and research professionals in the fields of computational and applied mathematics, computational physics, civil and chemical engineering, chemistry, and the life sciences.Call Number: E-BOOKISBN: 9780470522158Publication Date: 2009-08-14
- An Invitation to Applied Mathematics by An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation introduces the reader to the methodology of modern applied mathematics in modeling, analysis, and scientific computing with emphasis on the use of ordinary and partial differential equations. Each topic is introduced with an attractive physical problem, where a mathematical model is constructed using physical and constitutive laws arising from the conservation of mass, conservation of momentum, or Maxwell's electrodynamics. Relevant mathematical analysis (which might employ vector calculus, Fourier series, nonlinear ODEs, bifurcation theory, perturbation theory, potential theory, control theory, or probability theory) or scientific computing (which might include Newton's method, the method of lines, finite differences, finite elements, finite volumes, boundary elements, projection methods, smoothed particle hydrodynamics, or Lagrangian methods) is developed in context and used to make physically significant predictions. The target audience is advanced undergraduates (who have at least a working knowledge of vector calculus and linear ordinary differential equations) or beginning graduate students. Readers will gain a solid and exciting introduction to modeling, mathematical analysis, and computation that provides the key ideas and skills needed to enter the wider world of modern applied mathematics.Call Number: E-BOOKISBN: 9780128041536Publication Date: 2016-09-29
- Introduction to Computation and Modeling for Differential Equations by Uses mathematical, numerical, and programming tools to solve differential equations for physical phenomena and engineering problems Introduction to Computation and Modeling for Differential Equations, Second Edition features the essential principles and applications of problem solving across disciplines such as engineering, physics, and chemistry. The Second Edition integrates the science of solving differential equations with mathematical, numerical, and programming tools, specifically with methods involving ordinary differential equations; numerical methods for initial value problems (IVPs); numerical methods for boundary value problems (BVPs); partial differential equations (PDEs); numerical methods for parabolic, elliptic, and hyperbolic PDEs; mathematical modeling with differential equations; numerical solutions; and finite difference and finite element methods. The author features a unique "Five-M" approach: Modeling, Mathematics, Methods, MATLAB®, and Multiphysics, which facilitates a thorough understanding of how models are created and preprocessed mathematically with scaling, classification, and approximation and also demonstrates how a problem is solved numerically using the appropriate mathematical methods. With numerous real-world examples to aid in the visualization of the solutions, Introduction to Computation and Modeling for Differential Equations, Second Edition includes: New sections on topics including variational formulation, the finite element method, examples of discretization, ansatz methods such as Galerkin's method for BVPs, parabolic and elliptic PDEs, and finite volume methods Numerous practical examples with applications in mechanics, fluid dynamics, solid mechanics, chemical engineering, heat conduction, electromagnetic field theory, and control theory, some of which are solved with computer programs MATLAB and COMSOL Multiphysics® Additional exercises that introduce new methods, projects, and problems to further illustrate possible applications A related website with select solutions to the exercises, as well as the MATLAB data sets for ordinary differential equations (ODEs) and PDEs Introduction to Computation and Modeling for Differential Equations, Second Edition is a useful textbook for upper-undergraduate and graduate-level courses in scientific computing, differential equations, ordinary differential equations, partial differential equations, and numerical methods. The book is also an excellent self-study guide for mathematics, science, computer science, physics, and engineering students, as well as an excellent reference for practitioners and consultants who use differential equations and numerical methods in everyday situations. Call Number: E-BOOKISBN: 9781119018445Publication Date: 2015-10-05
- Differential Equation Analysis in Biomedical Science and Engineering by Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-world ODE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the computed numerical solutions and is a valuable resource for dealing with a broad class of linear and nonlinear ordinary differential equations. The author's primary focus is on models expressed as systems of ODEs, which generally result by neglecting spatial effects so that the ODE dependent variables are uniform in space. Therefore, time is the independent variable in most applications of ODE systems. As such, the book emphasizes details of the numerical algorithms and how the solutions were computed. Featuring computer-based mathematical models for solving real-world problems in the biological and biomedical sciences and engineering, the book also includes: R routines to facilitate the immediate use of computation for solving differential equation problems without having to first learn the basic concepts of numerical analysis and programming for ODEs Models as systems of ODEs with explanations of the associated chemistry, physics, biology, and physiology as well as the algebraic equations used to calculate intermediate variables Numerical solutions of the presented model equations with a discussion of the important features of the solutions Aspects of general ODE computation through various biomolecular science and engineering applications Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R is an excellent reference for researchers, scientists, clinicians, medical researchers, engineers, statisticians, epidemiologists, and pharmacokineticists who are interested in both clinical applications and interpretation of experimental data with mathematical models in order to efficiently solve the associated differential equations. The book is also useful as a textbook for graduate-level courses in mathematics, biomedical science and engineering, biology, biophysics, biochemistry, medicine, and engineering.Call Number: E-BOOKISBN: 9781118705483Publication Date: 2014-03-17

- Nonlinear Ordinary Differential Equations by An ideal companion to the new 4th Edition of Nonlinear Ordinary Differential Equations by Jordan and Smith (OUP, 2007), this text contains over 500 problems and fully-worked solutions in nonlinear differential equations. With 272 figures and diagrams, subjects covered include phase diagrams inthe plane, classification of equilibrium points, geometry of the phase plane, perturbation methods, forced oscillations, stability, Mathieu's equation, Liapunov methods, bifurcations and manifolds, homoclinic bifurcation, and Melnikov's method.The problems are of variable difficulty; some are routine questions, others are longer and expand on concepts discussed in Nonlinear Ordinary Differential Equations 4th Edition, and in most cases can be adapted for coursework or self-study.Both texts cover a wide variety of applications whilst keeping mathematical prequisites to a minimum making these an ideal resource for students and lecturers in engineering, mathematics and the sciences.Call Number: E-BOOKISBN: 9780199212033Publication Date: 2007-10-11
- The Qualitative Theory of Ordinary Differential Equations by Superb, self-contained graduate-level text covers standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. Major focus on stability theory and its applications to oscillation phenomena, self-excited oscillations and regulator problem of Lurie. Bibliography. Exercises.Call Number: QA372 .B823 1989ISBN: 0486658465Publication Date: 1989-02-01
- An Introduction to Ordinary Differential Equations by "Written in an admirably cleancut and economical style." -- Mathematical Review. A thorough, systematic first course in elementary differential equations for undergraduates in mathematics and science, requiring only basic calculus for a background, and including many exercises designed to develop students' technique in solving equations. With problems and answers. Index.Call Number: QA372 .C59 1989ISBN: 0486659429Publication Date: 1989-03-01
- Differential Equations by Finding and interpreting the solutions of differential equations is a central and essential part of applied mathematics. This book aims to enable the reader to develop the required skills needed for a thorough understanding of the subject. The authors focus on the business of constructing solutions analytically, and interpreting their meaning, using rigorous analysis where needed. MATLAB is used extensively to illustrate the material. There are many worked examples based on interesting and unusual real world problems. A large selection of exercises is provided, including several lengthier projects, some of which involve the use of MATLAB. The coverage is broad, ranging from basic second-order ODEs and PDEs, through to techniques for nonlinear differential equations, chaos, asymptotics and control theory. This broad coverage, the authors' clear presentation and the fact that the book has been thoroughly class-tested will increase its attraction to undergraduates at each stage of their studies.Call Number: QA371 .K52 2003ISBN: 0521816580Publication Date: 2003-05-08
- Differential Equations by This text strikes a balance between the traditional and the modern. It covers all of the traditional material and more. It offers flexibility of use that will allow faculty at a variety of institutions to use the text. Includes a large number of graphics that display the ideas in ODEs; modeling and applications; and projects, which provide students with the opportunity to bring together much of what they have learned, including analytical, computational, and interpretative skills. Ideal for readers interested in learning about differential equations.Call Number: QA371 .P565 2001ISBN: 0135981379Publication Date: 2001-05-30
- Differential Equations by Concise introduction for undergraduates includes, among other topics, a survey of first order equations, discussions of complex-valued solutions, linear differential operators, inverse operators and variation of parameters method, the Laplace transform, Picard's existence theorem, and an exploration of various interpretations of systems of equations. Numerous clearly stated theorems and proofs, examples, and problems followed by solutions.Call Number: QA372 .B384 1999ISBN: 0486406784Publication Date: 2011-11-02
- Differential Equations and Linear Algebra by Written by a mathematician/engineer/scientist author who brings all three perspectives to the book. This volume offers an extremely easy-to-read and easy-to-comprehend exploration of both ordinary differential equations and linear algebra--motivated throughout by high-quality applications to science and engineering. Features many optional sections and subsections that allow topics to be covered comprehensively, moderately, or minimally, and includes supplemental coverage of Maple at the end of most sections. For anyone interested in Differential Equations and Linear Algebra.Call Number: QA184 .G72 2001ISBN: 013011118XPublication Date: 2000-12-05
- Differential Equations and Linear Algebra by This text covers the core concepts and techniques of elementary linear algebra - matrices and linear systems, vector spaces, eigensystems and matrix exponentials - that are needed for an introduction to differential equations. The book emphasizes mathematical modelling of real-world phenomena.Call Number: QA372 .E34 2000ISBN: 0139737510Publication Date: 2000-07-11
- Differential Equations with Boundary Value Problems by For differential equations courses. Written for beginning students, this well organized introduction promotes a solid understanding of differential equations with a flexible presentation. With less emphasis on formal calculation than other texts, all the basic methods are covered linear, separable, and exact equations as well as higher order cases, linear equations with constant and variable coefficients, Laplace transform methods, boundary value problems, and nonlinear systems. The text's systems focus induces an intuitive understanding of the concept of a solution of an initial value problem in order to resolve potential confusion about what is being approximated when a numerical method is used.Call Number: QA372 .C6417 2003ISBN: 0130934194Publication Date: 2002-08-07
- A First Course in Differential Equations by The CLASSIC EDITION of Zill's respected book was designed for instructors who prefer not to emphasize technology, modeling, and applications, but instead want to focus on fundamental theory and techniques. Zill's CLASSIC EDITION, a reissue of the fifth edition, offers his excellent writing style, a flexible organization, an accessible level of presentation, and a wide variety of examples and exercises, all of which make it easy to teach from and easy for readers to understand and use.Call Number: QA372 .Z54 2001ISBN: 0534373887Publication Date: 2000-12-08
- Introductory Differential Equations by The authors show how differential equations model physical phenomena and how the study of this topic has meaningful scientific and real-world value. They examine themes such as error analysis and predictability many times throughout the text. It is organized by important phenomena instead of techniques. Rote solution methods are de-emphasized, and the study of nonlinearity is introduced and compared with linear systems. Original multi-stepped problems may be used as traditional homework exercises, group projects, or lab worksheets. Work with technology is included but the text is not keyed to any specific program or tool. Fundamental Ideas, Exponential Growth, Fundamental Theory, Linearity, Oscillatory Motion, The Geometry of Systems of Differential Equations, The Analysis of Linear Systems, Nonlinear Differential Equations, Numerical Methods, The Laplace Transform For all readers interested in introductory differential equations.Call Number: QA372 .K8438 1997ISBN: 0201765497Publication Date: 1996-10-15